Saturday, May 28, 2016

Binary Search Tree Data Structure

Graph

A graph ‘G’ is defined as G = (V, E) Where V is a set of all vertices and E is a set of all edges in the graph.

Example
graph
In the above example, ab, ac, cd, and bd are the edges of the graph. Similarly, a, b, c, and d are the vertices of the graph.

Tree

A connected acyclic graph is called a tree. In other words, a connected graph with no cycles is called a tree.
Tree 












Binary Tree

Binary tree is a tree in which every node has a maximum of two nodes connected.

 


Binary Search Tree

Binary Search tree is a binary tree with the following properties.


• The left subtree of a node contains only nodes with keys less than the node’s key.

• The right subtree of a node contains only nodes with keys greater than the node’s key.


• Both the left and right subtrees must also be binary search trees. 



BST




Binary search tree should be implemented considering the above properties.

BST.h file implements the data structure and functions of Binary Search Tree.
Please find a link on github to this same implementation at the bottom.

[code]
#ifndef _BST_
#define _BST_

#include <stdlib.h>
#include <limits.h>

/*data structure binary search tree*/
typedef struct bst_node
{
    int data;
    struct bst_node* left;
    struct bst_node* right;   
}bst;

/*
  allocate memory for a single
  node
  return the node
*/
bst* createBST();

/*
  add the given data to the
  given tree
*/
void addBST(bst* tree, int data);

/*
  print the tree in sorted
  order
*/
void printOrderedList(bst* tree);

/*
  free the memory allocated
  for the bst
*/
void destroyBST(bst* tree);

/*
  Delete the node with
  the given value from
  given bst
*/
bst* deleteBST(bst* tree, int data);

/*
  return 1 if given data is
  present in the given bst
  0 otherwise
*/
int findBST(bst* tree, int data);

/*
  copy the bst given in tree
  to bst given as copy
*/
void copyBST(bst* tree, bst* copy);

/*
  find the node with min value
  and return it
*/
bst* minValueNode(bst* tree);


/*Implementations*/

/**********************/
bst* createBST()
{
    bst* tree = malloc(sizeof(bst)); // allocate memory
    tree -> data = INT_MIN;
    tree -> left = NULL;
    tree -> right = NULL;
    return tree;
}

/**************************/
void destroyBST(bst* tree)
{
    if(tree == NULL)
        return;

    if(tree -> left != NULL)    
        destroyBST(tree -> left);
   
    if(tree -> right != NULL)
        destroyBST(tree -> right);
   
    free(tree);
}

/*********************************/
void copyBST(bst* tree, bst* copy)
{
    if(tree == NULL)
        return;
   
    addBST(copy, tree -> data);

    if(tree -> left != NULL)
        copyBST(tree -> left, copy);

    if(tree -> right != NULL)
        copyBST(tree -> right, copy);

   
}

/*******************************/
void addBST(bst* tree, int data)
{
    bst* node = malloc(sizeof(bst));
    node -> data = data;
    node -> right = NULL;
    node -> left = NULL;   

    if(tree -> data == INT_MIN) // if root is not entered yet
    {
        tree -> data = data;
        return;
    }

    if( (tree -> data) <= data) // if data should go to left
    {
        if( tree -> right == NULL)
        {
            tree -> right = node;
        }   
        else
            addBST(tree -> right, data);
    }
    else
    {
        if( tree -> left == NULL)
        {
            tree -> left = node;
        }   
        else
            addBST(tree -> left, data);
    }
   
   
}

/*********************************/
bst* deleteBST(bst* tree, int data)
{
    bst* tmp;
    if(tree == NULL)
        return tree;

    if(tree -> data > data)
        deleteBST(tree -> left, data);
    else if(tree -> data < data)
        deleteBST(tree -> right, data);
    else
    {
        if(tree -> left == NULL)
        {
            tmp = tree -> right;
            free(tree);
            return tmp;
        }
        else if(tree -> right == NULL)
        {
            tmp = tree -> left;
            free(tree);
            return tmp;
        }
        tmp = minValueNode(tree -> right); // find min node from right children
        tree -> data = tmp -> data;

        tree -> right = deleteBST(tree -> right, tmp -> data);//remove min node from right children
    }
    return tree;
}

/*********************************/
int findBST(bst* tree, int data)
{
    if(tree == NULL)
        return;

    if(tree -> left != NULL)
    {   
        if(findBST(tree -> left, data))
            return 1;
    }
   
    if(tree -> right != NULL)
    {
        if(findBST(tree -> right, data))
            return 1;
    }

    if(tree -> data == data)
    {
        return 1;
    }
    else
        return 0;
}

/************************/
int findMax(bst* tree)
{
    bst* tmp = tree;
    int val;

    while(tmp != NULL)
    {
        val = tmp -> data;
        tmp = tmp -> right;
    }
    return val;
}

/************************/
int findMin(bst* tree)
{
    bst* tmp = tree;
    int val;

    while(tmp != NULL)
    {
        val = tmp -> data;
        tmp = tmp -> left;
    }
    return val;
}

/*******************************/
void printOrderedList(bst* tree)
{
    if(tree == NULL)
        return;
    if(tree -> left == NULL && tree -> right == NULL)
    {
        printf("%d ",tree -> data);
        return;
    }
   
    if(tree -> left != NULL)
        printOrderedList(tree -> left);

    printf("%d ",tree -> data);
    if(tree -> right != NULL)
        printOrderedList(tree -> right);
   
}

/***************************/
bst* minValueNode(bst* tree)
{
    bst* tmp = tree;

    while (tmp -> left != NULL)
        tmp = tmp -> left;

    return tmp;
}


#endif
[/code]

test.c file demonstrate the functionalities of the BST implemented in BST.h file.

[code]
#include <stdio.h>
#include "BST.h"

void printArray(int arr[30]);
void populate(bst* tree, int arr[30]);

/*********/
int main()
{
    int randomNos[30];
    int num;
    bst* tree = createBST();
    bst* copy = createBST();
   
    printf("Adding random numbers to BST\n");
    populate(tree, randomNos);   

    printf("Populated order..\n");
    printArray(randomNos);

    printf("Printing ordered list from tree\n");
    printOrderedList(tree);
    printf("\n");
    printf("\n");
   
    printf("Copying BST to another BST..\n Printing it..\n");
    copyBST(tree, copy);
    printOrderedList(copy);
    printf("\n");
    printf("\n");

    printf("Max in the tree : %d \n",findMax(tree));
    printf("Min in the tree : %d \n",findMin(tree));
    printf("\n");

    printf("Enter a number find in the tree : \n");
    scanf("%d",&num);
   
    if(findBST(tree, num))
        printf("%d is in the tree\n",num);
    else
        printf("%d is not in the tree\n",num);

    printf("\n");

    printf("Removing %d from the tree..\n",randomNos[5]);
    tree = deleteBST(tree, randomNos[5]);
    printf("After removal\n");
    printOrderedList(tree);
    printf("\n");
   
    printf("Destroying BST...\n");
    destroyBST(tree);

    printf("\nPrinting tree after destroy..\n\n");
    printOrderedList(tree);
   

    return 0;
}

/************************************/
void populate(bst* tree, int arr[30])
{
    int i;
    srand(time(NULL));

    for(i = 0; i<30; i++)
    {
        arr[i] = rand()%50;
        addBST(tree, arr[i]);
    }
}

/****************************/
void printArray(int arr[30])
{
    int i;
   
    for(i = 0; i<30; i++)
        printf("%d ",arr[i]);
    printf("\n");
}

[/code]

Please visit here to view the code in github.

No comments:

Post a Comment

Optimized quick sort

In the previous article  we discussed about quick sort algorithm. In this article we are going to discuss about further optimizing quick sor...